Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Biol (Stuttg) ; 24(6): 950-959, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35596640

ABSTRACT

The climate is changing rapidly, provoking species to shift their ranges poleward and upslope. We currently lack a mechanistic understanding of the effect of warmer temperatures on plants, especially for seasonally distinct patterns. Spring geophytes are emblematic forest plants that have a short aboveground lifecycle in the first half of the year and are thus particularly sensitive to winter and spring warming. We set up a warming experiment with separate and combined winter and spring warming on seedlings of three European spring geophytes: Anemone nemorosa, Hyacinthoides non-scripta and Ornithogalum pyrenaicum. Seedling emergence and plant height were recorded at the end of winter and spring treatment, when also biomass of the root, shoot and storage organ was determined. We found negative effects of combined winter and spring warming on seedling emergence. The weight of the storage organ proved to be the best indicator of seedling performance and was negatively affected by separate winter warming in Anemone and by spring warming in Hyacinthoides. Successful seedling emergence was jeopardized by the absence of a cold period, while seedling performance seemed to be negatively influenced directly by higher temperatures through a phenological shift. Our findings confirm that warmer winter and spring temperatures could hamper regeneration of spring geophytes.


Subject(s)
Climate , Forests , Climate Change , Plants , Seasons , Seedlings , Temperature
2.
Plant Biol (Stuttg) ; 24(5): 745-757, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35373433

ABSTRACT

Quercus spp. are one of the most important tree genera in temperate deciduous forests in terms of biodiversity, economic and cultural perspectives. However, natural regeneration of oaks, depending on specific environmental conditions, is still not sufficiently understood. Oak regeneration dynamics are impacted by climate change, but these climate impacts will depend on local forest management and light and temperature conditions. Here, we studied germination, survival and seedling performance (i.e. aboveground biomass, height, root collar diameter and specific leaf area) of four oak species (Q. cerris, Q. ilex, Q. robur and Q. petraea). Acorns were sown across a wide latitudinal gradient, from Italy to Sweden, and across several microclimatic gradients located within and beyond the species' natural ranges. Microclimatic gradients were applied in terms of forest structure, distance to the forest edge and experimental warming. We found strong interactions between species and latitude, as well as between microclimate and latitude or species. The species thus reacted differently to local and regional changes in light and temperature ; in southern regions the temperate Q. robur and Q. petraea performed best in plots with a complex structure, whereas the Mediterranean Q. ilex and Q. cerris performed better in simply structured forests with a reduced microclimatic buffering capacity. The experimental warming treatment only enhanced height and aboveground biomass of Mediterranean species. Our results show that local microclimatic gradients play a key role in the initial stages of oak regeneration; however, one needs to consider the species-specific responses to forest structure and the macroclimatic context.


Subject(s)
Quercus , Climate Change , Forests , Microclimate , Quercus/physiology , Trees
3.
Plant Biol (Stuttg) ; 23(6): 1051-1062, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34516719

ABSTRACT

Climate change, eutrophication and intensified forest management are affecting forest understorey plants, a major component of forest biodiversity. The main impacts of these drivers have often been studied, but we lack a good understanding of how key understorey species are affected by potential interactive effects of these drivers and which species drive community changes. Here we assessed the responses of 15 species occurring in the understorey of a deciduous temperate forest to experimental warming, light addition and enhanced nitrogen inputs in permanent plots surveyed for 9 years. We analysed vegetation cover and key functional traits (plant height, specific leaf area and reproductive traits) at the species level and identified the species driving community change with principal response curves (PRC). Light addition and warming, and to a lesser extent also nitrogen addition, had profound effects on cover and functional traits. Many species showed directional change over time, and this change can either be strengthened or weakened by treatments, indicating the importance of long-term monitoring. Against expectations, we observed few interactions between treatments. Species responses to treatments were related to ecological strategies (generalists versus forest specialist). Generalists, such as Rubus fruticosus, benefitted from the warming and light treatments and outcompeted forest specialists. This might ultimately lead to biotic homogenization. Since the treatment effects of light and warming were additive, keeping the canopy closed will only mitigate, but not stop, the effects of global warming on the forest understorey plants.


Subject(s)
Ecosystem , Nitrogen , Biodiversity , Forests , Plants
4.
Plant Biol (Stuttg) ; 22(4): 601-614, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32109335

ABSTRACT

Intraspecific trait variation (ITV; i.e. variability in mean and/or distribution of plant attribute values within species) can occur in response to multiple drivers. Environmental change and land-use legacies could directly alter trait values within species but could also affect them indirectly through changes in vegetation cover. Increasing variability in environmental conditions could lead to more ITV, but responses might differ among species. Disentangling these drivers on ITV is necessary to accurately predict plant community responses to global change. We planted herb communities into forest soils with and without a recent history of agriculture. Soils were collected across temperate European regions, while the 15 selected herb species had different colonizing abilities and affinities to forest habitat. These mesocosms (384) were exposed to two-level full-factorial treatments of warming, nitrogen addition and illumination. We measured plant height and specific leaf area (SLA). For the majority of species, mean plant height increased as vegetation cover increased in response to light addition, warming and agricultural legacy. The coefficient of variation (CV) for height was larger in fast-colonizing species. Mean SLA for vernal species increased with warming, while light addition generally decreased mean SLA for shade-tolerant species. Interactions between treatments were not important predictors. Environmental change treatments influenced ITV, either via increasing vegetation cover or by affecting trait values directly. Species' ITV was individualistic, i.e. species responded to different single resource and condition manipulations that benefited their growth in the short term. These individual responses could be important for altered community organization after a prolonged period.


Subject(s)
Climate Change , Ecosystem , Forests , Europe , Nitrogen/metabolism , Plants/metabolism , Soil/chemistry
5.
Plant Biol (Stuttg) ; 18(3): 417-22, 2016 May.
Article in English | MEDLINE | ID: mdl-26465806

ABSTRACT

With a distribution range that covers most of the Northern hemisphere, common juniper (Juniperus communis) has one of the largest ranges of all vascular plant species. In several regions in Europe, however, populations are decreasing in size and number due to failing recruitment. One of the main causes for this failure is low seed viability. Observational evidence suggests that this is partly induced by climate warming, but our mechanistic understanding of this effect remains incomplete. Here, we experimentally assess the influence of temperature on two key developmental phases during sexual reproduction, i.e. gametogenesis and fertilisation (seed phase two, SP2) and embryo development (seed phase three, SP3). Along a latitudinal gradient from southern France to central Sweden, we installed a transplant experiment with shrubs originating from Belgium, a region with unusually low juniper seed viability. Seeds of both seed phases were sampled during three consecutive years, and seed viability assessed. Warming temperatures negatively affected the seed viability of both SP2 and SP3 seeds along the latitudinal gradient. Interestingly, the effect on embryo development (SP3) only occurred in the third year, i.e. when the gametogenesis and fertilisation also took place in warmer conditions. We found strong indications that this negative influence mostly acts via disrupting growth of the pollen tube, the development of the female gametophyte and fertilisation (SP2). This, in turn, can lead to failing embryo development, for example, due to nutritional problems. Our results confirm that climate warming can negatively affect seed viability of juniper.


Subject(s)
Gametogenesis, Plant , Juniperus/physiology , Seeds/physiology , Belgium , Climate , Europe , Fertilization , France , Juniperus/embryology , Reproduction , Seeds/embryology , Temperature
6.
Ann Bot ; 113(3): 489-500, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24284814

ABSTRACT

BACKGROUND AND AIMS: Environmental change is increasingly impacting ecosystems worldwide. However, our knowledge about the interacting effects of various drivers of global change on sexual reproduction of plants, one of their key mechanisms to cope with change, is limited. This study examines populations of poorly regenerating and threatened common juniper (Juniperus communis) to determine the influence of four drivers of global change (rising temperatures, nitrogen deposition, potentially acidifying deposition and altering precipitation patterns) on two key developmental phases during sexual reproduction, gametogenesis and fertilization (seed phase two, SP2) and embryo development (seed phase three, SP3), and on the ripening time of seeds. METHODS: In 42 populations throughout the distribution range of common juniper in Europe, 11,943 seeds of two developmental phases were sampled. Seed viability was determined using seed dissection and related to accumulated temperature (expressed as growing degree-days), nitrogen and potentially acidifying deposition (nitrogen plus sulfur), and precipitation data. KEY RESULTS: Precipitation had no influence on the viability of the seeds or on the ripening time. Increasing temperatures had a negative impact on the viability of SP2 and SP3 seeds and decreased the ripening time. Potentially acidifying depositions negatively influenced SP3 seed viability, while enhanced nitrogen deposition led to lower ripening times. CONCLUSIONS: Higher temperatures and atmospheric deposition affected SP3 seeds more than SP2 seeds. However, this is possibly a delayed effect as juniper seeds develop practically independently, due to the absence of vascular communication with the parent plant from shortly after fertilization. It is proposed that the failure of natural regeneration in many European juniper populations might be attributed to climate warming as well as enhanced atmospheric deposition of nitrogen and sulfur.


Subject(s)
Juniperus/physiology , Nitrogen/metabolism , Seeds/physiology , Atmosphere/analysis , Climate Change , Ecosystem , Europe , Geography , Germination , Juniperus/embryology , Juniperus/growth & development , Plant Leaves/embryology , Plant Leaves/growth & development , Plant Leaves/physiology , Pollination , Reproduction , Seeds/embryology , Seeds/growth & development , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...